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ABSTRACT 
Voice Activity Detection (VAD) is a very important front end 
processing in all Speech and Audio processing applications. 
The performance of most if not all speech/audio processing 
methods is crucially dependent on the performance of Voice 
Activity Detection. An ideal voice activity detector needs to 
be independent from application area and noise condition 
and have the least parameter tuning in real applications. In 
this paper a nearly ideal VAD algorithm is proposed which 
is both easy-to-implement and noise robust, comparing to 
some previous methods. The proposed method uses short-
term features such as Spectral Flatness (SF) and Short-term 
Energy. This helps the method to be appropriate for online 
processing tasks. The proposed method was evaluated on 
several speech corpora with additive noise and is compared 
with some of the most recent proposed algorithms. The ex-
periments show satisfactory performance in various noise 
conditions. 

1. INTRODUCTION 

Voice Activity Detection (VAD) or generally speaking, de-
tecting silence parts of a speech or audio signal, is a very 
critical problem in many speech/audio applications includ-
ing speech coding, speech recognition, speech enhancement, 
and audio indexing. For Instance, the GSM 729 [1] standard 
defines two VAD modules for variable bit speech coding. 
VAD robust to noise is also a critical step for Automatic 
Speech Recognition (ASR). A well-designed voice activity 
detector will improve the performance of an ASR system in 
terms of accuracy and speed in noisy environments.  
According to [2], the required characteristics for an ideal 
voice activity detector are: reliability, robustness, accuracy, 
adaptation, simplicity, real-time processing and no prior 
knowledge of the noise. Among these, robustness against 
noisy environments has been the most difficult task to ac-
complish. In high SNR conditions, the simplest VAD algo-
rithms can perform satisfactory, while in low SNR environ-
ments, all of the VAD algorithms degrade to a certain extent. 
At the same time, the VAD algorithm should be of low com-
plexity, which is necessary for real-time systems. Therefore 
simplicity and robustness against noise are two essential 
characteristics of a practicable voice activity detector. 
According to the state of art in voice activity detection, 
many algorithms have been proposed. The main difference 
between most of the proposed methods is the features used. 

Among all features, the short-term energy and zero-crossing 
rate have been widely used because of their simplicity. 
However, they easily degrade by environmental noise. To 
cope with this problem, various kinds of robust acoustic 
features, such as autocorrelation function based features [3, 
4], spectrum based features [5], the power in the band-
limited region [1, 6, 7], Mel-frequency cepstral coefficients 
[4], delta line spectral frequencies [6], and features based on 
higher order statistics [8] have been proposed for VAD. Ex-
periments show that using multiple features leads to more 
robustness against different environments, while maintain-
ing complexity and effectiveness. Some papers propose to 
use multiple features in combination with some modeling 
algorithms such as CART [9] or ANN [10], however these 
algorithms add up with the complexity of the VAD itself.  
On the other hand, some methods employ models for noise 
characteristics [11] or they use enhanced speech spectra de-
rived from Wiener filtering based on estimated noise statis-
tics [7, 12]. Most of these methods assume the noise to be 
stationary during a certain period, thus they are sensitive to 
changes in SNR of observed signal. Some works, propose 
noise estimation and adaptation for improving VAD robust-
ness [13], but these methods are computationally expensive. 
There are also some standard VADs which have been widely 
employed as references for the performance of newly pro-
posed algorithms. Some of these standards are the GSM 729 
[1], the ETSI AMR [14] and the AFE [15]. For example, 
G.729 standard uses line spectrum pair frequencies, full-
band energy, low-band energy and zero-crossing rate and 
applies a simple classification using a fixed decision bound-
ary in the space defined by these features [1]. 
In This paper a VAD algorithm is proposed which is both 
easy-to-implement and real-time. It also possesses a satisfy-
ing degree of robustness against noise. This introduction 
follows by a discussion on short-term features which are 
used in the proposed method. In Section 3, the proposed 
VAD algorithm is explained in detail. Section 4 discusses 
the experiments and presents the results. Finally, the conclu-
sions and future works are mentioned in Section 5.  

2. SHORT_TERM FEATURES 

In the proposed method we use three different features per 
frame. The first feature is the widely used short-term energy 
(E). Energy is the most common feature for speech/silence 
detection. However this feature loses its efficiency in noisy 
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conditions especially in lower SNRs. Hence, we apply two 
other features which are calculated in frequency domain. 
The second feature is Spectral Flatness Measure (SFM). 
Spectral Flatness is a measure of the noisiness of spectrum 
and is a good feature in Voiced/Unvoiced/Silence detection. 
This feature is calculated using the following equation: 
 

)/(log10 10 mmdb AGSFM =  (1) 
 

Where mA and mG are arithmetic and geometric means of 
speech spectrum respectively. Besides these two features, it 
was observed that the most dominant frequency component 
of the speech frame spectrum can be very useful in discrimi-
nating between speech and silence frames. In this paper this 
feature is represented by F. This feature is simply computed 
by finding the frequency corresponding to the maximum 
value of the spectrum magnitude, |)(| kS .  
In the proposed method, these three features are applied in 
parallel to detect the voice activity.  
 

 
Figure 1: Feature values of clean speech signal 

 

 
Figure 2: Feature values of speech signal corrupted with white noise 

 

 
Figure 3: Feature values of speech signal corrupted with babble 

noise 

Figures 1, 2 and 3 represent the effectiveness of these three 
features when speech is clean or is corrupted by white and 
babble noises. 

3. PROPOSED VAD ALGORITHM 

The proposed Algorithm starts with framing the audio sig-
nal. In our implementation no window function is applied on 
the frames. First N  frames are used for threshold initializa-
tion. For each incoming speech frame the three features are 
computed. The audio frame is marked as a speech frame, if 
more than one of the feature values fall over the pre-
computed threshold. The complete procedure of the pro-
posed method is described below: 
  

Proposed Voice Activity Detection Algorithm 
1- Set Frame _ Size 10ms= and compute number of frames 
( FramesOfNum __ )(no frame overlap is required) 
2- Set one primary threshold for each feature {These thresholds 
are the only parameters that are set externally}  

• Primary Threshold for Energy (Energy_PrimThresh)  
• Primary Threshold for F (F _ Pr imThresh)  
• Primary Threshold for SFM (SF _ Pr imThresh)  

3- for i  from 1 to FramesOfNum __  
        3-1- Compute frame energy ))(( iE . 
        3-2- Apply FFT on each speech frame. 
                3-2-1- Find 

k
F(i) arg max(S(k))= as the most domi-

nant frequency component. 
                3-2-2- Compute the abstract value of Spectral Flatness 

Measure ))(( iSFM . 
        3-3- Supposing that some of the first 30 frames are silence, 

find the minimum value for E )_( EMin , F )_( FMin  
and SFM )_( SFMin . 

        3-4- Set Decision threshold for E , F and SFM . 
• Thresh _ E Energy _ Pr imThresh *log(Min _ E)=                 
• Thresh _ F F _ Pr imThresh=  
• Thresh _ SF SF _ Pr imThresh=  

        3-5- Set 0=Counter . 
• If ((E(i) Min _ E) Thresh _ E)− >= then ++Counter . 
• If ((F(i) Min _ F) Thresh _ F)− >= then ++Counter . 
• If ((SFM(i) Min _ SF) Thresh _ SF)− >= then ++Counter . 

        3-6- If 1>Counter  mark the current frame as speech else 
mark it as silence. 

        3-7- If current frame is marked as silence, update the en-
ergy minimum value: 

1_
)()_*_(_

+
+

=
CountSilence

iEEMinCountSilenceEMin  

        3-8- Thresh _ E Energy _ Pr imThresh *log(Min _ E)=  
4- Ignore silence run less than 10 successive frames. 
5- Ignore speech run less than 5 successive frames.    

 
In the above algorithm there are three parameters that should 
be set primarily. These parameters are found automatically 
on a finite set of clean validation speech signals to obtain the 
best performance. Table 1 shows these parameter values 
used during all of the experiments in this paper. 
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Table 1: Appropriate values for parameters 
Energy _ Pr imThresh  F _ Pr imThresh  (Hz) SF _ Pr imThresh

40 185 5 
 
The experiments show that these parameters are not much 
dependent on recording conditions and are the best choices 
for general applications.  

4. EXPRIMENTS 

For evaluating the proposed method, we used four different 
speech corpora. The first one is TIMIT Acoustic-Phonetic 
Continuous Speech Corpus [16] which is regularly used for 
speech recognition evaluation and contains clean speech 
data. We used the test data of this corpus in our evaluations. 
The second corpus is a Farsi microphone speech corpus 
known as Farsdat which contains speech data of over 300 
native speakers [17]. The third corpus is a Farsi telephony 
speech corpus named TPersianDat collected in Laboratory 
for Intelligent Sound and Speech Processing (LISSP) in our 
department. This corpus is recorded for telephony speech 
and speaker recognition. This corpus is gathered in real 
world conditions and the speech files include background 
noise. Fourth dataset which is commonly used for evaluating 
VAD algorithms is the Aurora2 Speech Corpus. This corpus 
includes clean speech data as well as noisy speech.  
To show the robustness of the proposed method against 
noisy environments, we added different noises with different 
SNRs to the clean speech signals in the first three corpora. 
No additional noise was added to Aurora2 Speech corpus. 
To obtain a better viewpoint of the performance of the pro-
posed method we compare it with two other VAD algo-
rithms. The first one which is proposed in [13] finds an es-
timation of noise using Minimum Mean-Squared Error 
(MMSE) and is proposed for VAD in high variance vehicu-
lar noise. The other method which is mostly used as a refer-
ence method for VAD algorithms evaluation is the VAD 
used in the ITU G.728 Annex B standard [1]. 
Two common metrics known as Silence Hit Rate (HR0) and 
Speech Hit Rate (HR1) are used for evaluating the VAD 
performance. It is necessary to mention that mostly there is a 
trade-off between these two metrics and increasing one may 
lead to decreasing the other. To have a better metric for 
comparing two different VAD algorithm, we define a total 
performance metric (T) as the mean of HR0 and HR1. It is 
worth mentioning that in most applications increasing in 
HR1 is most important than increasing in HR0 so it is better 
to have a weighted mean between these two measures. But 
since we don't want to have a prejudgment for the possible 
applications of the method, we relinquish the weighted 
mean. However, the results demonstrate that the weighted 
mean is almost indifferent for the proposed evaluation. 
The proposed method is first evaluated for three different 
datasets and five different noises. For these evaluations, 
white, babble, pink, factory and Volvo noises with 25, 15, 5 
and -5 db SNRs are added to the original speech data. The 
proposed algorithm is also evaluated on the original speech. 
Table 2, shows the results achieved from these evaluations 
in term of HR0, HR1 and T. 

Table 2: Experimental Results for the proposed algorithm 
on three different speech corpora 

Accuracy % Corpus Noise SNR 
(db) HR0 HR1 T 

Accuracy for 
Noise % 

None --- 95.07 98.05 96.56 96.56 
25 90.41 99.77 95.09 
15 97.59 84.73 91.16 
5 73.68 100 86.84 white 

-5 44.01 100 72 

86.27 

25 96.46 97.89 97.18 
15 91.81 96.81 94.31 
5 70.17 95.61 82.89 babble 

-5 47.91 86.56 67.24 

85.40 

25 90.64 99.77 95.20 
15 84.29 98.06 91.17 
5 69.65 100 84.82 pink 

-5 23.40 100 61.70 

83.22 

25 90.54 99.83 95.18 
15 84.06 95.31 89.68 
5 75.31 76.20 75.75 factory 

-5 41.16 55.33 48.24 

77.21 

25 97.83 97.84 97.83 
15 51.62 97.13 74.37 
5 51.62 97.69 61.03 

TIMIT 

Volvo 

-5 15.14 96.72 55.93 

72.29 

None --- 97.19 97.72 97.45 97.45 
25 99.13 98.47 98.90 
15 98.01 99.16 98.58 
5 96.13 99.16 97.65 white 

-5 54.13 97.58 75.86 

92.74 

25 93.25 98.80 96.02 
15 54.13 99.23 76.78 
5 35.95 99.80 67.88 babble 

-5 24.44 100 62.22 

75.72 

25 98.43 99.04 98.74 
15 97.86 98.25 98.05 
5 94.06 96.47 95.27 pink 

-5 71.43 96.16 83.79 

93.96 

25 99.04 98.55 98.79 
15 90.06 98.28 94.17 
5 80.43 95.76 88.10 factory 

-5 62.02 84.14 73.08 

88.53 

25 99.13 98.70 98.92 
15 98.01 98.89 98.45 
5 51.65 97.95 74.80 

Farsdat 

Volvo 

-5 29.30 98.97 64.13 

84.07 

None --- 86.83 92.93 89.88 89.88 
25 85.15 93.75 89.45 
15 80.17 94.2 87.19 
5 74.21 94.96 84.58 white 

-5 65.66 86.10 75.88 

84.27 

25 86.36 93.49 89.93 
15 84.83 85.82 85.32 
5 61.62 85.79 73.70 babble 

-5 38.47 80.83 59.65 

77.15 

25 85.68 93.75 89.71 
15 80.70 94.05 87.37 
5 69.03 95.14 82.09 pink 

-5 33.05 97.73 65.39 

81.14 

25 85.79 93.52 89.65 
15 80.99 94.29 87.64 

TPersianDat 

factory 

5 72.62 88.3 80.46 

80.31 
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-5 51.86 75.12 63.49
25 93.68 85.30 89.48
15 81.49 86.85 84.17
5 57.48 91.56 74.52Volvo 

-5 46.52 90.60 68.56

79.18 

Average  73.14 93.94 83.33 84.74 
 
In the above Table the last column shows the average accu-
racy of the proposed method for a single noise in different 
SNRs. The average accuracy of the proposed method for the 
mentioned test set is 84.74%. For comparison, we evaluated 
the method proposed in [13] in the same conditions. From 
now on we simply call the method proposed in [13] as the 
MMSE method. The evaluation results are listed in Table 3 
in the same order. 

 
Table 3: Experimental Results for MMSE method presented 

in [13] 
Accuracy % Corpus Noise SNR 

(db) HR0 HR1 T 
Accuracy for 

Noise % 
None --- 93.93 88.18 91.05 91.05 

25 95.84 84.18 90.01
15 99.2 77.13 88.17
5 99.95 58.85 79.4white 

-5 99.97 25.27 62.62

80.05 

25 89.68 85.65 87.67
15 84.01 86.01 85.01
5 81.27 83.16 82.21babble 

-5 79.32 78.22 78.77

83.41 

25 93.12 83.68 88.4
15 98.09 76.68 87.39
5 99.95 57.80 78.87pink 

-5 99.97 19.23 59.60

78.56 

25 95.01 83.12 89.06
15 97.20 76.38 86.79
5 97.80 58.77 78.28factory 

-5 98.51 24.30 61.40

78.88 

25 94.29 88.00 91.15
15 95.29 86.58 90.94
5 95.23 85.26 90.24

TIMIT 

Volvo 

-5 95.77 83.55 89.66

90.49 

None --- 89.50 98.78 94.14 94.14 
25 94.54 95.73 95.14
15 98.61 90.76 94.68
5 99.30 77.93 88.61white 

-5 99.86 46.62 73.24

87.91 

25 77.95 90.99 84.47
15 63.1 90.28 76.69
5 60.10 82.23 71.17babble 

-5 55.52 64.80 60.16

73.12 

25 97.10 94.29 95.70
15 98.61 87.61 93.11
5 99.50 65.77 82.64pink 

-5 99.86 18.86 59.38

82.7 

25 90.61 93.07 91.84
15 92.43 84.75 88.59
5 94 58.66 76.33factory 

-5 94.49 12.56 53.53

77.57 

25 98.80 94.57 96.68
15 98.79 93.26 96.02
5 98.73 92.71 95.72

Farsdat 

Volvo 

-5 97.02 91.73 94.37

95.69 

None --- 93.73 90.93 92.33 92.33 
25 97.09 87.07 92.05 
15 98.71 79.00 88.85 
5 92.71 64.52 78.61 white 

-5 99.97 26.28 63.12 

80.65 

25 89.23 88.95 89.09 
15 79.56 84.37 81.96 
5 64.31 82.95 73.63 babble 

-5 61.27 79.72 70.49 

78.79 

25 99.12 85.14 92.13 
15 98.32 76.23 87.27 
5 99.55 60.16 79.85 pink 

-5 100 22.82 61.41 

80.16 

25 99.95 76.97 88.46 
15 99.95 71.03 85.49 
5 99.01 52.18 75.59 factory 

-5 99.18 15.29 57.23 

76.69 

25 95.83 90.81 93.32 
15 95.93 89.23 92.58 
5 96.89 88.20 92.55 

TPersianDat 

Volvo 

-5 96.83 85.67 91.25 

92.42 

Average  92.68 73.22 82.95 84.14 
 

The results illustrated in Tables 2 and 3 show a slightly 
higher performance for the proposed method. But there are 
some other observations that should be highlighted. First of 
all these experiments show that in contrary to the proposed 
method, the MMSE method has a lower average HR1 and a 
higher Average HR0 which is not acceptable in most cases. 
The second point is that the main flaw of the proposed 
method is its low accuracy in Volvo noise which is the po-
tency point of the MMSE method. As mentioned earlier the 
MMSE method is mainly proposed for VAD in vehicular 
noise environment which includes Volvo noise.  If we ex-
clude the Volvo noise from our evaluations the proposed 
method will highly outperform the method in [13]. Also the 
proposed method is about ten times faster than the MMSE 
method and is more applicable for real-time processing. 
The second experiments are done on the Aurora speech cor-
pus for evaluating the proposed method for three other noise 
conditions and comparing it with G. 729B VAD algorithm as 
a reference method. These experiments are done on subway, 
babble and car noises. Table 4 shows the resulted accuracy 
in terms of HR0, HR1 and T. The values indicating the per-
formance of G. 729 have been derived from [18] where 
Aurora2 has also been used for performance evaluation. 

 
Table 4: Comparison results for the proposed method  

and G. 729 standard 
Subway noise Babble Noise Car Noise Method HR0 HR1 T HR0 HR1 T HR0 HR1 T 

G. 729B 42.3 92.5 67.4 41.7 92.9 67.3 55.3 87.7 71.5
Proposed 63.11 85.8 74.4 68.0 90.5 79.28 72.68 87.73 80.2

 
The above table shows a considerable improvement in total 
VAD accuracy using the proposed method. But the main 
improvement in its accuracy is due to HR0 and HR1 is low-
er for the proposed method. 
The third experiment is done to demonstrate the importance 
of each of the applied features in VAD algorithm independ-
ently. For this purpose we made a minor change in our algo-
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rithm so that a frame shall be marked as speech if only one 
of the features approve it. This experiment is done using 
TIMIT corpus in clean and noisy conditions. Only white and 
babble noises with four SNRs are used. The results are illus-
trated in Figure 4. 
 

 
Figure 4: Effect of each selected feature on VAD Accuracy 

(The most dominant frequency (F), Short-term Energy (E) and 
Spectral Flatness (SF)) 

 
Figure 4 shows the role of each of these features in VAD 
performance. This illustrates that the good performance of 
the algorithm in babble noise is mostly due to SFM feature. 
Also it shows that for white noise, short-time energy and 
updating it as mentioned in the algorithm lead to better re-
sults. Also, the higher average results for F feature shows 
that the most dominant frequency component plays an im-
portant role for achieving the highest total performance. 

5. CONCLUSIONS AND FUTURE WORKS 

The main goal of this paper was to introduce an easy to im-
plement Voice Activity Detection which is both robust to 
noise environments and computationally tractable for real-
time applications. This method uses short-time features of 
speech frames and a decision strategy for determining 
speech/silence frames. The main idea is to vote on the re-
sults obtained from three discriminating features. This me-
thod was evaluated on four different corpora and different 
noise conditions with different SNR values. The results 
show promising accuracy in most conditions compared to 
some other previously proposed methods.  
There are two minor deficiencies for the proposed method. 
First, this method is still vulnerable against certain noises 
such as car noise. This flaw can be solved by using some 
other features which are more robust to this condition. 
The second defect of the proposed method which is also 
minor but can be decisive for some applications is its rela-
tively lower average speech hit rate, specially compared to 
G. 729 VAD standard. This flaw may be solved with some 
revisions in VAD algorithm for example possibly by incor-
porating fuzzy terms in the decision process. 
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